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Summary

This paper prcsents a strategy for dynamically monitoring digital controllers in the laboratory

for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity

of digital control systems operating in harsh electromagnetic environments can be compromiscd by

upsets caused by induced transient electrical signals. Digital system upset is a functional error

mode that involvcs no component damage, can occur simultaneously in all channels of a redundant

control computer, and is software dependent. The motivation for this work is the need to develop

tools and tcchniques that can be used in the laboratory to validate and/or certify critical aircraft

controllers operating in elcctromagnetically adverse environments that result from lightning, high-

intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP).

The dctection strategy presented in this papcr provides dynamic monitoring of a given control

computer for degraded functional integrity resulting from redundancy management crrors, control

calculation errors, and control correctncss/effectivencss errors. In particular, this paper discusses

the use of Kahnan filtering, data fusion, and statistical decision theory in monitoring a given digital

controller for control calculation errors. The control laws calculated in the digital controller arc

modeled as linear (or linearizcd) recursive state equations. This model is uscd in the design of Kahnan
filters that estimate the correct control calculations. These estimates of thc correct calculations are

compared with the calculations obtained by the control computer. Residuals are generated and

used in probabilistic decision rules to determine if the calculations performed by the control unit

are faulty. A decision is made for the command calculation of each control loop, and these local

decisions are optimally weighted and fuscd into a decision on thc integrity of control calculations. A

simple example is included to illustrate the concept.

Introduction

Future advanced aircraft will require systems for stability augmentation as well as guidance and

control that will be critical to the flight of the aircraft. The trend in avionics technology is the

implementation of control laws on digital computers that are interfaced to the sensors and control

surface actuators of the aircraft. Since these control systems will bc flight critical, the problem of

verifying the integrity of the control computer in adverse, as well as nominal, operating environments

becomes a key issue in the development and certification of a critical control system.

An operating environment of particular concern results from the presence of electromagnetic

fields caused by sources such as lightning, high-intensity radiated fields (HIRF), and nuclear

clectromagnctic pulses (NEMP). Electromagnetic fields may cause analog electrical transients to be

induced on the aircraft wiring, and these signals can propagate to the onboard electronic equipment

despite shielding and protective devices such as filters and surge suppressors. Digital computer

systems have two typcs of effects that can be caused by transient electrical signals. The first is

component damage that requires repair or replacement of the equipment. The second effect to a

digital system is characterized by functional error modes, collectively known as upset, which involve

no component damage.

Functional error modes of a fault-tolerant controller that can be termed as upset in the system

are characterized by (1) faulty input/output (I/O) processing and command calculations that

result in off-nominal system behavior or degraded system performance, and (2) faulty redundancy

management decisions that result in degraded system perh_rmance and/or reliability. In the case of

upset, normal operation can be restored to the system by corrective action such as resetting/reloading

the software or by an internal recovery mechanism, such as an automatic rollback to a system state

prior to the disturbance. The subject of effective and reliable internal upset recovery mechanisms is

another current topic for research. The usual features of fault-tolerant systems such as redundant

input and output checking and selection, surge suppression devices and filters, and a redundant

microprocessor architecture with voting may not be sufficient to ensure correct operation in an



electromagneticallyadverseoperatingenvironment.Surgesuppressiondevicesandfiltersarceffective
for large-amplitude,high-frequencytransients.However,low-amplitudesignalsat frequenciesnear
the clockspeedsof digital circuitry carl begeneratedby electromagneticfieldsandpropagateto
electronicequipmentonboardan aircraft. In addition,redundancyprotectsagainstsingle-mode
failuresthat occurin onechannelof the system,but it doesnot protectagainstthe potential
common-modefailure(i.e.,upset)of all channelsin the redundantsystemasa resultof transient
signalsinducedby a singleelectromagneticdisturbance.

To date, no comprehensiveguidelinesor criteria exist for detectingupsetin fault-tolerant
digitalcontrolcomputers,designingreliableinternalupsetrecoverymechanisms,performingtestsor
analysesondigitalcontrollersto verifycontrolintegrity,orevaluatingupsetsusceptibility/reliability
in electromagneticallyadverseoperatingenvironments.In orderto assessadigitalcontrolcomputer
for upsetsusceptibility,the issueof upsetdetectionmustbe addressed.Real-timeconsiderations
for upsetdetectionwouldreducepostdata processingrequirementsduringvalidation/certification
testing. Therefore,the objectiveof this researchis to developan upsetdetectionmethodology
for real-timelaboratoryimplementation.Duringlaboratorytests,a givendigital computer-based
controlsystemwill beevaluatedforupsetsusceptibilitywhensubjectedto analogtransientelectrical
signalslike thosethat wouldbeinducedbylightning,HIRF,orNEMP.

Theobjectiveof this paperis to presentan upsetdetectionstrategyfor monitoringa given
fault-tolerantcontrollerfor degradedcontrol integrity resultingfrom redundancymanagement
errors,controllawcalculationerrors,andcontrolcorrectness/effectivenesserrors.Kahnanfiltering,
statisticaldecisiontheory,anddata fusionareusedin the detectionof redundancymanagement
errorsandcontrolcalculationerrors.Analyticalredundancyof thecontrollawsprovidesa reference
of thecorrectcontrolcommandfor thegivendynamicmodeof theplant.Thisreferencecommand
andanactuatormodelareusedin thecontrolcorrectness/effectivenessdecision.In particular,this
paperfocusesontheuseof Kalmanfiltering,datafusion,anddecisiontheoryin monitoringadigital
controllerfor controllawcalculationerrors.

An upsettestmethodologyfor controlcomputerswasdiscussedin reference1. However,this
methodologyreliesonpostprocessingofdatacollectedduringeachtest.Sincethedetectionstrategy
presentedin thispaperis for eventualreal-timeimplementation,it Willeliminatetheneedto store
dataduringtestsin whichupsetdoesnot occur. In addition,thestrategyprovidesan indication
of whereerrorsoccurredfor diagnosticpurposessothat anydesiredpostprocessingof thedata is
simplified.

Otherworksin failuredetectionmethodsincludethe detectionof sensorfailuresin turbofan
engines(ref.2) andthe detectionof failuresin aircraftactuatorsandcontrol surfaces (ref. 3). In

reference 2, analytical redundancy, Kahnan filtering, and decision theory were used to detect sensor

failures in an F-100 turbofan engine. Out-of-range or large bias errors that occurred instantaneously

were detected by comparing measured sensor values with those of an analytical model, taking the

absolute value, and comparing this residual to a threshold. Small bias errors and drift in sensor

measurements were detected using multiple-hypothesis testing methods in which each hypothesis

corresponded to a particular sensor failure. Once a sensor failure was detected, the elements of an

interface switch matrix were changed so that a Kalman filter estimate of the sensor value replaced

the measurement in the input vector used in the control laws. The methodology of reference 2 was

demonstrated on a hybrid real-time simulation of the F-100 engine as well as on a full-scale F-100

engine with good results. However, this methodology was not designed to detect failures in systems

with physically redundant sensors and computers and, therefore, does not use data fusion methods.

In reference 3, analytical redundancy and decision theory were used to detect actuator failures

and control surface failures in aircraft. The design methodology consisted of two failure detection

and identification (FDI) algorithms or subsystems--one for actuator failures and one for control

surface failures. In the actuator FDI subsystem, an analytical model was implemented to generate



a predictionof the dynamicbehaviorof the actuators. This predictionwascomparedwith
measurementstaken from the actuators,and a residualwasgeneratedand usedin a decision
process.ThecontrolsurfaceFDI subsystemwasdesignedin a similarfashion.Themethodology
of reference3 wasdemonstratedusinga six-degree-of-freedomnonlinearsimulationof a modified
Boeing737airplanewith goodresults.This methodologywasnot designedto detectfailuresin
physicallyredundantsystemsanddid notusedatafusiontechniques.

A formulationof the problemconsideredin this paperfollowsa list of symbolsusedin the
notation. The monitoringstrategyis presentedin the nextsectionandfocuseson the detection
of controllaw calculationerrorsin redundantprocessors.An exampleis presentedin whichthe
calculationerror-detectionschemeis demonstratedon a hypotheticalquad-redundantprocessing
system.Thefinalsectionof thispapercontainssomeremarksonthedetectionstrategy.

Symbols

Bold type denotes vector and matrix variables. A dot over a symbol indicates a derivative with

respect to time.

A

B

c;
D/

d(k)

dc(k)

dc(k)

de(k)

de(k)

d_n(k)

dout(k)

dr(k)

H_

I

J_

K_(k)

k

Lj(k)

M

plant system matrix

plant control input matrix

system matrix for 7 sensors measuring parameter f

plant state measurement matrix

global upset decision that results from fusion of dc(k), de(k), and dr(k)

decision vector for control law calculations of processor i

decision scalar for control law calculations that result from fusion of

elements in di(k)

decision vector for control correctness/effectiveness

decision scalar for control correctness/effectiveness that results from fusion

of elements in de(k)

decision vector for input selection process of processor i

decision vector for output selection process of controller

decision scalar for input/output redundancy management that results from

fusion of elements in d_n(k ) and dout(k)

input-selection state transition matrix for parameter f of processor i

control law calculation state transition matrix

input matrix for control law calculation state vector of processor i

control law calculation measurement matrix

identity matrix

input-selection state measurement matrix

Kalman filter gain matrix for state estimate for control law

discrete time variable

output-selection state transition matrix for jth control law calculation

output-selection measurement matrix



e_(kJk)

q_
rt_.

r_(k)

s:(k)

s:(t)

s_(t)
T

_(t)

vi(k)

vs(k)

V_n(k)

Vout(k)

v_(k)

w[.(k)

w_(k)

Wout_(k)

w_,(k)

xp(t)

x_(k)

_i(k]k- 1)

Y_n(k)

Yout(k)

Yout(t)

Youti (k)

Fj

actuator measurement matrix

predicted error covariance matrix for estimate of control law calculation of

processor i

updated error covariance matrix for estimate of control law calculation of

processor i

covariance matrix for process noise of control law calculation of processor i

covariance matrix for measurement noise of control law calculation of

processor i

residual vector of decision rule for detecting control law calculation errors

in processor i

discretized redundant plant sensor vectors for parameter f

continuous redundant plant sensor vectors for parameter f

"/-redundant sensor measurement of plant parameter f

actuator state transition matrix

control input to plant from actuators

measurement noise for control law calculation of processor i

measurement noise for redundant sensors of plant parameter f

measurement noise for selected input vector of processor i

measurement noise for selected output vector of controller

measurement noise for actuators

process noise for control law calculation of processor i

process noise for "/-redundant sensors measuring plant parameter f

process noise for selection of input parameter f of processor i

process noise for selection of control output parameter j

process noise for actuators

plant state vector

control law calculation state vector of processor i

predicted state estimate of control law calculation state vector of

processor i

updated state estimate of control law calculation state vector of processor i

selected input vector for processor i

selected control output vector of controller

continuous form of selected control output vector

selected value of input parameter f for processor i

selected value of control law calculation j

noise matrix for output selection process of controller
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A

P

_t

Special notation:

HOc

H O_cj

Hlc

g lic

H l_ci

In

P(DOicj IHI_j)

P(DlicjlHOic3)

P(HOcj)

Pfaicj

Pm_cj

PFc

pr c
PMc

R

T

E

Subscripts:

C

e

f

in

process noise matrix for control law calculation of processor i

selected-output vector compression matrix

process noise matrix for 7-redundant sensors of plant parameter f

process noise matrix for actuators

process noise matrix for plant

noise matrix for input selection process of plant parameter f of processor i

plant state measurement matrix

hypothesis

hypothesis

hypothesis

hypothesis

hypothesis

that control law calculation in controller is correct

that control law calculations of processor i are correct

that control law calculation j of processor i is correct

that calculation of control laws in controller is incorrect

that control law calculations of processor i are incorrect

hypothesis that control law calculation j of processor i is incorrect

natural logarithm

probability of deciding that control law calculation j of processor i is

correct given that it is incorrect

probability of deciding that control law calculation j of processor i is

incorrect given that it is correct

a priori probability that hypothesis HOicj is correct for all processors

probability of a false alarm for control law calculation j of processor i

probability of a missed detection for control law calculation j of processor i

probability of a false alarm for control law calculations of controller

probability of a false alarm for control law calculations of processor i

probability of a missed detection for control law calculations of controller

probability of missed detection for control law calculations of processor i

set of real numbers

matrix transpose

is an element of

mean of innovations sequence for control law calculation j of processor i

control law calculation variable

command correctness/effectivcncss variable

sensor variable for plant parameter f

input variable



out

P

r

u

Subsubscripts:

f

J

Superscripts:

i

in

N

n

P

5/
7/

O"

-1

Abbreviations:

A/D

calc.

cmd.

cntl.

cond.

decis.

effect.

D/A

EM

FDI

HIRF

i/o

meas.

mgt.

NEMP

#P1, [tP2, ..., #Pc

output variable

plant variable

input/output redundancy management variable

actuator variable

index for plant parameter

index for control law calculations

index for redundant processors

number of plant parameters being measured

dimension of actuator output state space

dimension of control law calculation state speLce

dimension of plant state space

index for redundant sensors

number of redundant sensors measuring plant parameter f

dimension of control output space

number of redundant processors

matrix inverse

analog to digital

calculation

command

control

conditioning

decision

effectiveness

digital to analog

electromagnetic

failure detection and identification

high-intensity radiated fields

input/output

measurement

management

nuclear electromagnetic pulse

microprocessors
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ROC

redun.

S/H

sig.

Receiver Operating Characteristics

redundancy

sample and hold

signal

Problem Formulation

The fault-tolerant controller to be evaluated for upset susceptibility is interfaced in the laboratory

to a simulation of the plant, redundant sensors, and actuators so that closed-loop dynamics are

represented during testing. A block diagram of the laboratory setup is shown in figure 1. The

controller with a processors (or microprocessors (#P), designated as #P1 to PPa) is subjected to

disturbances like those that can occur in an electromagnetically harsh environment. In the case of

lightning, transient signals that would be induced on internal wiring are generated. In the case of

HIRF, electromagnetic (EM) fields that could occur from radars or high-power radio transmitters

are generated. The control system is dynamically monitored for upset in real-time testing. In the

event of the occurrence of upset during testing, the detection methodology will provide a framework

for diagnosis of the upset in the given digital controller.

EM field (HIRF)
or

V

I

I

I

t

l transient signal

(light.... n ing____._)

Control system

Fault-tolerant controller Interface

Dynamic simulation [

of plant, actuators, & I
redundant sensors [

I Real-time ]
upset monitor for

critical digital controllers

Figure 1. Laboratory configuration for upset evaluation of digital controllers.

Consider the block diagram shown in figure 2 of a given control system consisting of the plant,

redundant sensors, actuators, and fault-tolerant control computer. Input/output conversions and

signal conditioning between the plant and controller are represented by the indicated blocks. Input

processing functions including analog-to-digital (A/D) conversion, frequency-to-digital conversion,

surge suppressors for protection against high-level transient signals, and filters to reduce high-

frequency noise have been represented by the A/D and signal conditioning block. Output processing

functions such as signal conditioning and digital-to-analog (D/A) conversion are represented by the

D/A and signal conditioning block.

The given fault-tolerant controller is modeled to consist of three basic blocks. The input se-

lection and redundancy management block performs rate and/or range checks of the data values

and generates the input data vector for each of the microprocessors. The redundant microproces-

sors calculate the control commands based on the input vector for each processor. Redundancy in

the control computer protects against single-mode failure of components during normal operation.



Yout(t)

l

sig. cond.[ [

I

Actuators
Redundant

sensors

s/t)

-3
I ,,,D,,I

T [ sig. cond. I
Output

selection &

redundancy
management

Redundant

microprocessors] - l°pu, ] i st_k)[
selection & _ .
redundancy ]
management

I
Fault-tolerant controller

Figure 2. Control system with redundant sensors and microprocessors.

The output selection and redundancy management block performs rate and/or range checks on the

calculated commands from each processor and determines via voting, or some other scheme, the

command to be output from the controller for each control loop.

The linear model in the following discussion is proposed for the given control system of figure 2.

The number of redundant sensors for the measurement of the fth plant parameter is given as 5f,

and tile number of different plant measurements is given by m. The number of redundant processors

is designated by a. Each processor performs n calculations. The number of control outputs is

given by 7]. The control action in the plant is effeeted by N actuator signals. In equations (1)

through (6), state variables, sensor values, and input/output variables are designated by z, s, and y,

respectively. Control inputs are designated by u. System noise processes are designated by w.

Variable superscripts index replicates of redundant system elements. Subscripts characterize the

variables, and subsubscripts index elements of vector variables. Bold type denotes vector and matrix

variables.

In the linear model the plant state vector is given as

±p(t) = Axp(t) + B u(t) + CWp(t) (x/t) c RP) (1)

with sensors

where

(sf(t) e #:)

(_= 1,2,. , _s;s= 1,2, ..., m;_7(t)_n) (2)

For input selection and redundancy management,

Y_n(k) [Y_nl(k) /= Yin2(k) -.. Y_nm(k)] T

with

(Y_n(k) • R rn)

Y_ns_(k)= n}(k)Ss(k)+ v} wtn,(k) i RSf )(i = 1,2, .., (r;Yins(k) E R;Sf(k) c (3)

where

Ss(k)= Is}(k)_}(k)... _(k)] _

For control law calculations of redundant controllers,

(f = 1,2, ..., m)

x_(k + 1) = F_ x_(k) + G_ Y_n(k) + ¢_ wi(k) (i= 1,2, ..., a;x_(k) e n n) (4)

8
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where

x_(k)= [4_(k) x_2(k) ... x_(k)] r (x_j(k) • R)

For output processing and redundancy management,

Yout(k) =A[youtl(k) Yout2(k) ... Yout T,(k)] T (Yout(k) • R _ = +1)

youtj(k) = g¢(k) xc,(k) + rjwou_,(k) (j = 1,2, ..., n;Youtj(k) • R) (5)

where

xc, = [x_,(k)x_j(k) . r... %(k)] (x_j(k) • R")

For the actuators,

u(t) = T Your(t) + P wu(t) (u(t) • RN) (6)

where

Yout (t) = [Youtl (t) Yout2 (t) ... Yout,_(t)] T (Yout(t) • R v)

Equations (1) (6) represent a hybrid model of continuous-time and discrete-time components.

Equation (1) is the continuous-time state equation for the plant. Matrix A is the plant system

matrix, u(t) is the control input, and wp(t) reflects noise and/or modeling errors. Equation (2) is

the continuous-time sensor model for the redundant sensors with wi I (t) representing the sensor noise.

Equation (3) is the discrete-time model for the selection and management of redundant sensor inputs

Spf (k) for the fth plant parameter measurement with the noise term W_n/ (k) representing modeling

error. Matrix E}(k) is time varying to represent selection, rejection, voting, or fusion of redundant
sensor measurements. If the given system has an input data selection process without data fusion,

the elements of E} (k) will be 0 or 1 and may be based on heuristics, such as the result of range and/or
rate checks on the sensor measurements. In systems that fuse sensor measurements into a single

value, matrix E}(k) would represent the input data fusion process. Equation (4) is the discrete-

time state equation for the calculation vector of the ith processor, and matrix F / is the transition

matrix. Matrix G_ is the measurement matrix for measurement vector Y_n(k) of the ith processor.

Term wi(k) reflects noise and/or modeling errors associated with the calculation vector from the

ith processor. Equation (5) is the discrete-time model for the selection and management of the

redundant calculations with modeling error accounted for in the noise term Woutj (k). Matrix Lj(k)

is time varying to represent selection or fusion of calculations for the output Youtj (k) of the jth

calculation during operation of the system. If the given system has a voting strategy for calculations,

the elements of Lj(k) will be 0 or 1 and may be based on heuristics associated with the voting

strategy. In systems that combine calculations into one output, Lj (k) would represent the calculation

fusion process. Vector Your(k) represents the output control calculations. Matrix A collapses the

calculation vector into the output command vector. Equation (6) is the continuous-time actuator

model. The actuators receive the command vector Your(t) and affect the dynamics of the plant via

u(t). The term Wu(t) reflects noise and/or modeling errors.

Monitoring Strategy for Fault-Tolerant Control System

In order to detect redundancy management errors, control calculation errors, and control ef-

fectiveness errors in the fault-tolerant controller, measurements of the control system of figure 2

9



Upsetmonitorfordigitalcontrollers

Fault-tolerantcontroller
[ I

cond & I.._"" ] selecnon_ Redundant [_ selection& _ sensors, I P

actuators[ "_ I1 redundancy microprocessors] -I I redundancyl-"l A/O, & I'_'-

[[management , I imana_ement[ i sig. cond. l[_

u(k)
Xp(k)

O:3

(n (k) (k)

Figure 3. Fault-tolerant controller measurements.

must be taken by the monitor. These measurements are indicated in figure 3, and their equations
are presented as follows.

The measurement of the plant state is given by

_p(k)= n xp(k) + vp(k)

The measurement of sensor outputs is given by

zf(k) = D/ Sf(k) + vy(k)

The measurement of input vectors is given by

Z_n(k)= ji Ytn(k)+ vt,,(k)

(Zp(k)• RP) (7)

(: = 1,2, ..., m;zf(k) • RsI) (S)

(Z_n(k) •R m) (9)

The measurement of calculated commands is given by

z_(k) = H / xi(k) +vi(k) (j = 1,2, ..., n;z/(k) • R n)

The measurement of the output command vector is given by

Zout(k) = M Yont(k) + Vout(k) (Zout(k) • R r/)

(10)

(11)

and the measurement of the actuator is given by

zu(k)=P u(k)+vu(k) (Zu(k) •R N) (12)

In equations (7)-(12), f_, Dr, ji, H/, M, and P are the measurement matrices. The terms

vp(k), vf(k), V_n(k), vi(k), Your(k), and vu(k) represent measurement noise. All noise processes in

equations (1)-(12) are assumed to be independent, white, and Gaussian.

10



The fault-tolerantcontrolcomputeris monitoredfor errorsin redundancymanagementand
controlcommandcalculations,aswellasfor commandcorrectness/effectivenessgiventhedynamic
modeof theplant. In thecontextof thismathematicalformulation,upsetis definedasachangein
anyof the matricesE_(k) of equation(3), F/ and G / of equation (4), and Lj(k) of equation (5)
that causes a reduction in effectiveness and/or reliability of the control system. A concept for upset

detection in digital control computers is presented in figure 4. The upset detection strategy has

three modules to monitor for input/output redundancy management errors, control law calculation

errors, and control command errors. The distinction between these last two types of errors should

be noted. Control calculation errors result when basic mathematical operations are performed

incorrectly by the processor. Control command errors result when incorrect input parameters are

used in calculations or when rate/range checks are performed incorrectly on the calculated result.

A basic description of the three modules is given, but the paper focuses on the detection of control

law calculation errors.

Fault-
tolerant

controller

zf(k)
Upset monitor for critical digital controllers

I/0
z in (k)

z idk)

Zou t (k) ] 6] Input & output

[ v] redundancy
] _1 management
] [ error detection

z _n(k) !

z i,(k) _'] Control law calc.

61 error detection
v I

Zout (k) 61

Control cmd.error detection

d in(k)

dou t (k)

l-J ,/o
redun, mgt.

]___.._ error data
] [ fusion

Cntl. calc.
error data

fusion

d e (k) I
Cntl. effect.

[ I err°r data

fusion

redun, mgt.
error

decision
dr(k)

Cntl.errorCalc.[

decision --_ Global I
de(k) h.._l error I

w-] decision [

effec,  
error ]

decision |
de(k) ]

Upset
decision

d(k)

Figure 4. Upset detection concept for digital control systems.

Redundancy management processes in the control computer to be monitored are the input-

parameter selection process, the output-command selection process, and the management of redun-

dant resources. An example of a redundancy management error is the computer deciding that one of

the redundant sensors is faulty and ignoring its measurements when, in fact, it is operating correctly.

Since eliminating an unfaulted sensor reduces the redundancy and overall reliability of the system,

this redundancy management error would constitute an upset. The redundancy management moni-

tor detects incorrect changes in the matrices E)(k) and Lj(k) of equations (3) and (5), respectively.

Elements of these matrices are compared with tile input/output selection codes of the controller to

determine if the controller has eliminated resources that are not faulty. Input/output selection codes

are binary words that are generated by the controller to reflect the choices made by the input/output

selection logic.

Inputs to the input selection error detection portion of this monitor are measurements of the

sensor outputs (zf(k)) and measurements of the selected input vector for each channel (Z_n(k)). If

an error is not detected in the input selection process, then each decision variable in the vector d_n (k)

11



will maintainits nominalvalueof -1. If an error is detectedin the input selectionprocess,
the correspondingelementvalueof d_n(k) becomesunity. Inputsto the output selectionerror
detectionpart of this monitoraremeasurementsof thecalculatedcontrolcommands(z_(k))and
theselectedoutputcommands(Zout(k)).If anerrorisnotdetectedin theoutputselectionprocess,
the decisionvariablesin the vectordout(k)will maintaina nominalvalueof -1. If an error is
detectedin theoutput selectionprocess,the appropriateelementvalueof dout(k)becomesunity.
Individualdecisionsin dln(k) anddout(k) arccombinedor fusedintoadecisionscalarforredundancy
managementerrors(dr(k)).

Thecontrollawcalculationsof eachprocessorarealsomonitoredfor errors.Thismonitoringis
donedynamicallyasthecalculationSaremade.Changes in the matrices F c and Gl_, of equation (4)

are detected by monitoring for errors in the calculated control commands. Inputs to the control law

calculation error detector are measurements of the selected input vector for each channel (Z_n(k)) and

the calculation vector of each channel (zi(k)). Individual decisions (d_(k)) are made for the control

law calculations of each processor, and these decisions are fused into a scalar error decision (de(k))
for the control law calculations of the controller.

Analytical redundancy of the control laws provides a reference of the correct control command

for the given dynamic mode of the plant. Inputs to the analytical model of the control laws are

measurements of the plant state (Zp(k)). This analytical reference and the actuator measurement

Zu(k)) are used in a decision process to determine if the calculated command output vector (Yout (k))

is correct and is, therefore, effective in regulating the plant under a given dynamic situation. It should

be noted that this is not an evaluation of the control law design. The control laws are assumed to be

designed appropriately, to bc validated prior to this assessment of the controller, and to be effective

in controlling the plant. Any lack of effectiveness in the control commands that are output by the

controller during this assessment will, therefore, be the result of incorrectness of the commands

that could be attributed to incorrectly selected input values or faulty rate/range checks. Thus,

considerations such as range and rate limitations of the actuators will be inherent in this evaluation

of the effectiveness of the control output. If an error in the control command is not detected, each

of the decision variables in the vector de(k) will maintain its nominal value of -1. If an error in

control correctness is detected, the appropriate value of de(k) becomes unity. Individual control

error decisions are made for each control loop, and these decisions are combined or fused into one

scalar error decision (de(k)) for the correctness/effectiveness of the control output vector.

The decisions corresponding to redundancy management errors, control law calculation errors,

and control correctness/effectiveness errors are fused into one global upset decision (d(k)), which

has a nominal value of -1 and a value of unity for the upset decision. This global fusion process

may be a logical OR rule, or it may provide weightings corresponding to the relative costs of the

three error processes. In tests during which upset occurs and is signaled by the unity value of d(k),

the redundancy management error decisions d_n(k ) and dout(k), the control law calculation error

decisions di(k), and the control correctness/effectiveness error decisions de(k) are all stored in the

monitor as a diagnostic aid for posttesting data analysis. A strategy for monitoring the control

computer for erroneous control law calculations is now presented.

Monitor for Control Law Calculation Error

The approach for monitoring control law calculation errors in a controller with a single processor

is shown in figure 5. Since the controller has a single processor, the redundancy index i is unity. The

control law calculations are represented as a linear or linearized recursive state equation with state

vector xi(k). A Kalman filter is used to generate the estimate vector _i(k) of the correct state for

the calculations based on measurements z_n(k ) of the selected input vector and measurements zi(k)

of tile control law calculation state vector. The estimate _(k) is compared with the measurement

z_(k) of the calculation vector to generate a residual vector ri(k). A statistical decision rule is then

12



Calculated command
Command calc.

Error
measurement z i.(k)--'7 Error decision error decision

Estimated]/ residual for pP; for PPi
I l .
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filter I I_"_' rule I I fusi°n ]

z i(k)

Figure 5. Strategy for monitoring control law calculation errors in digital controllers with a single processor.

applied to each element of the residual vector, and a decision di(k) is made regarding the correctness

of the calculations, given the selected input vector. Decisions for the individual calculations are then

fused into a single decision (dic(k)) for the correctness of the calculations.

The approach shown in figure 5 is readily extended to dynamically monitor processor calculations

in redundant systems and is illustrated in figure 6. The global decision dc(k) on whether calculation

errors have occurred is based on the fusion of the scalar calculation-error decisions dic(k) for

cr processors. The scalar calculation-error decision dic(k) for each processor is generated by the

process described in figure 5. Previous work (ref. 4) compared two distributed detection strategies,

each using a different type of data fusion• One strategy involved a single global decision based on the

fusion of local estimates, and the other strategy involved the fllsion of local decisions into a single

global decision. The performance of a statistical decision process is determined by the Receiver

Operating Characteristics (ROC) curve which is a plot of the probability of detection versus the

probability of false alarm, with the decision threshold as the varying parameter• The ROC curve

of the strategy with decision fusion was shown to be more desirable for two cases. Therefore, the

strategy of figure 6 uses fusion of local decisions. In order to illustrate the strategy for dynamically

monitoring the calculations of redundant processors, a simple example is presented.

Meas. of PPI cmd. PP1 cmd.
PPI cmd.

cmd. calc. z }.(k)----] calc. error calc. error calc., error

from laP1 PPI cmd.[ residuals, decisl°ns_aecllsl°ns
PP1 meas. estimate _ .... J r l(k) [Statistical d _.(k) [ laPl [ de(k)

z_ _. 1.... "-I Kes,aual _decision l"-"2-'_decision] _

xd_) _[generator] "-I rule ] " _

• Meas. of PP2 cmd. PP2 cmd. PP2 cmd.

cmd. calc. z_.(k) -"i calc error calc. error calc. error
from pP_ / " • .....

PP2 meas. _ pP,_cmd._ I residuals " " lCleCisl°ns2 oectslons2

2 estimate L.I_., allr2(k) [Stat'stlcald2.(k) _dc(k) _-- Control dc(k )
z:_(k) _ " 2--' "-I Kessau _ decision _ decision]

Kalman I x dK) h.._l generator[ "-1 rule [ ] fu-s-i-on--] calc.

_ I . I I I _ error
Z2c(k ) decision

• Meas. of - " taP- cmd " laPo cmd.. PPr_ cmd.
cmo. calc. z _(k)1 u " , ,

• c / " ealc error " calc. error . calc. error/
from PPo / " . ..... /

pP cmd. I residuals oeclsmns aeoslons
pv meas. o " o

_J_.,_ estimate L_Residua ' Irc_k)._ Istat st ca'i  ; I
z_.(k) _ _alt.j - I _ decision

Kalmanl A C..... h,..dgenerator I " I _ decision
filter i ,"-I I ] rule ] I tusmn I

fusion

Global decis.

on cntl. calc.

errors

Figure 6. Strategy for monitoring control law calculation errors in digital controllers with redundant processors.
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Example for quad-Redundant Processor

Consider a system of four redundant processing channels. Let the model of the calculations to be

made by the four channels bc given by third-order linear recursivc equations. Thus, for a processor
calculation we have

xi(k + 1) = F_: x_:(k) 4- G / Y_n(k) 4- _c/ w_(k) (i = 1, 2, 3, 4) (13)

with a measurement

where

zi(k) = H / xi(k) 4- vi(k) (i = 1, 2, 3, 4) (14)

] [: ] [: 071[oi]o40.6 0.7 0.9 2 0.951.0 0.5 o.s 0.9

0.3 1.0 F_= 0.4 0.9 F3= 0.3 0.8 Fc4= 0.35 0.9

0 0.5 0 0.5 0 0.4 0 0.3

[i°1
1

o

1
I1°°9:1o.9oo.8,]o o,G =o.910o =[:,oo9

0 0.9 1 0.9 0.8 1 0.8 0.9 I
o9]0.8

0.8

o:1 o.30:10.5o:][0io:]05 04 03 05
0 0.3 0 0.5 0 0.4 0 0.4

n_= rioi] [io!][ioi][io!]1 Hc2 = 1 Hc3 = 1 Hc4 = 1

o o o 0

The above matrices have no physical significance and were selected to ensure stability and observabil-

ity. The calculations from the ith processor are represented by state vector xi(k); the corresponding

state transition matrix is given by F/. The input to each channel is Y[n(k) with input matrix G_.

The form of the input Y[n(k) is

Y_n(k) = [Yini(k)] = [sin(2.4k) cos(2.4k) sin(1.4k) cos(1.4k)] (i = 1,2,3,4)

The process noise for each channel is represented by zero-mean white Gaussian noise w_(k) and noise

matrix _c/(k). The measurement matrix for each channel is H_, and the zero-mean white Gaussian

measurement noise is vi(k). The assumption is made that w_(k) and v_(k) are independent with

covariances Qi and R/, respectively. For this example,

ros0:lqc(k)= o o.5

0 0 0.5
o70 :]R_(k) = [ 00 0.70 0.7 (i = 1,2,3, 4)

After 10 iterations in the simulation of the calculation process, a perturbation occurs such that the

matrix F / for each channel is changed to the transpose L[Filrcj, thus yielding an incorrect calculation.

14



Detectingthat a perturbationhasoccurredusingKalmanfiltering,statisticaldecisiontheory,and
datafusionisdesired.

The Kalmanfilters areimplementedin Prediction-CorrectionForm (ref. 5) andestimatethe
calculatedcommandvectorof eachprocessor.Thus,fora predictedstateestimate,

_(k[k- 1)= Fi(k) _c(k- l[k- 1)+ Gi(k) z_n(k) (15)

the predicted error covariance is

= ICe(k)]qc(k)P_(kik-1) F_(k)P_(k-llk-1) [F_(k)]T +¢i(k) i i T (16)

The filter gain is

Ki(k) = P_,(klk-1) [Hic(k)]T{Hic(k) pic(k[k-1) [Hi(k)] T + R_(k)}-1 (17)

For the updated state estimate,

Hi(k)  (klk) =   (klk-1) + Kc(k)[zc(k ) - 1)1 (18)

the updated error covariance is

P_(klk ) = [I- gi(k) Hi(k) ] P_(kl k- 1) (19)

The state estimation errors for each of the four Kalman filters are shown in figure 7. Note that once

the Kalman filters have reached steady state, the estimation errors are 0 until the state transition

matrices are changed at 10 iterations.
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Figure 7. State estimation errors for the four Kalman filters of the example.
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Theresidualfor eachchannelis the absolutevalueof the innovationssequence,whichis the
bracketedtermin equation(18).Thus,theresidualvectoris givenby

ri(k) = [r/j] = Iz_(k)' Hi(k) R_(klk- 1)1 (j = 1,2,3) (20)

Theinnovationssequenceis a whiterandomsequencewhosemean(pi) is 0 if thecalculationsare
correct.A Bayesiandecisionrule (ref.6) will beusedin this examplefor eachcalculationof each
channel.Thehypothesesfor thedecisionrulefor the jth calculation of the ith processor are given

by

i + vij(k) ---, Incorrect calculation (Mean = i _ 0) /
Hlicj : r_.j (k) = #cj. Pcj (21)

Ii = O)HOicj: ricj(k) = v_cj(k) --* Correct calculation (Mean = ttcj

For this example, the a priori probabilities for these hypotheses are 0.5. The decision rule for the

Gaussian case assuming unity variance is given by

HI_j _ { P(HOc3)[ClOcj - COOcj] }
i > 1

rcj _ + -_- m- In (22)
g0ij #_cj [1 --- P__I_. --C-i-i(.jl

The left-hand side of equation (22) is the residual given in equation (20), and the right-hand side

of equation (22) is the threshold for the decision process. The threshold is dependent on the mean

of the residual, the a priori probabilities of the hypotheses given in equations (21), and the costs

associated with the decision process. The term Ca/3cj is the cost of deciding, for the jth calculation,
that a is true when fl is actually true. If the residual is less than the threshold, then hypothesis

H0/j of equations (21) is accepted and the calculation is considered correct. Otherwise, hypothesis

Hlc3 is accepted and the calculation is considered incorrect. For this example, the costs of making

a correct decision (i.e., a =/3) are all 0, and the costs of making an incorrect decision (i.e., a ¢/3)

are all 0.5. The performance of the Bayesian detectors for each channel, in terms of the probability

of false alarm and the probability of miss, is given, respectively, by

_c r i 2 -pfaicj = P(DlicjiHOicj) _ 1 e- (_) /2 i . (23)

and

Pmcji = P(DO_. ]H1 i.J3 )- V_ J-_ e ;-#cj) /2 dr_cj (24)

For this example, the residuals arc the innovations sequence defined in equation (20), and the

means pcji are unity. The integral limit Aica is defined to be the threshold given as the right-hand

side of equation (22).

The error decisions for the three calculations of the state vector from processor 1 are shown in

figure 8. In these plots, a value of 0 means that the decision process had not yet begun because

the Kalman filters were being initialized. A value of -1 indicates that the calculation is correct,

and a value of -t-1 indicates that the calculation is incorrect. For each calculation, all residuals

were larger than the thresholds after 10 iterations, and thus the three calculations were considered

incorrect. This decision is reflected in each of the three plots by the transition from -1 to +1. The

error decision plots for the calculations of processors 2, 3, and 4 are analogous to figure 8. The

probabilities of a missed detection and false alarm for the local decisions of each processor are 0.3083

and 0.0665, respectively.
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Figure 8. Error decisions for each calculation of the state vector from processor 1.

2O

The fusion hypotheses for each processor are given by

Hli: Incorrect command calculations of ith processor

H0c: Correct command calculations of ith processor

The a priori probabilities for these hypotheses are 0.5 for this example. The fusion rule (ref. 7) for

the local decisions from each processor is given by

anc(k) = f[C[tcj (k)] = acj • (25)

-1 H0 / (otherwise)

where

d_(k) = [dicj(k)]

1 - pmij

0i P(HI_) a i In Pfa_,j (_)(k) = 1)

a c = in p(yOic ) c3 = _ - Pfa_j

In Pm_j (d/cj (k) = -1)

The optimal fusion rule of reference 7 shown in equation (25) is a weighted sum of the local

decisions for each processor. The weights are based on the performance of the local detectors.

The performance of this fusion process for each processor, assuming equal local noise covarianees,

was given in reference 4 to be

3

PF c : _ (_) (pfaic)J(1 - pfai)a-Ju[A°ci + ai(2j - 3)]
j-O

(26)
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where

with

3

P-]]/Ic/= Z (_)(1- prnic)J(pmi) 3-j u[A°c i +a/( 3- 2j)]
j=o

• P(H1/)

,4 0' = In P(HOi)

3 Pm_c(1 - Pmic)

-- + _ In pfaic( 1 p_7_c) i 3 [ 1-Pmic 1-Pfaic]ac= _ In Pfa_-- +In 7P-_-c J

(27)

u[.] = Unit step function Pmic = pmiq = Pmic2 = Pmica Pfaic = pfaiq = pfaic2 = pfaic3

The fused error decision for the calculations of processor 1 is shown in figure 9. Note that figure 9

shows the plot of the error decision that results from the fusion of the three error decisions for

the calculations =of processor 1, as shown in figure 8. The fused error decision of figure 9 indicates

the decision that the calculations of processor 1 are incorrect after iteration 10. The fused error

decisions for the calculations of processors 2-4 were essentially identical to those of processor 1

shown in figure 9. The probabilities of a missed detection and false alarm for the fused decisions of

each processor are 0.2265 and 0.0127, respectively.

1.5

1.0

.5

die(k) 0

-.5

-1.0

-1.5 , , , ,
0 5 10 15 20

Iteration

dlc (k) = 0 (before decision process)

dlc (k) = -1 (correct calculation)

dlc (k) = +I (incorrect calculation)

Figure 9. Fused error decision for local error decisions for processor 1.

The hypotheses for tile fused decision process for global command calculations are given by

Hlc: Incorrect calculation /

/H0c : Correct calculation

18
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For this example, the a priori probabilities for these hypotheses are 0.5. The fused decision process

for global command calculations is given by the same algorithm of reference 7 and is

(

f[°_c(k)] = / 1 --_ Hlcdc(k)

( -1 _ HOc

4  c(k) > o) ](aOc+ E ac
i=1

(otherwise)

(29)

where

, 1-PM i

P(glc) i m ---pF_ --_ (anc(k)-- 1)

ac0 = In -P(HOc) ac = in _ (die(k) = -1)
PM_

The performance of this global fusion process is given by

4

PFc = _.= (4i) (PFic)i(1 _ pFc)i 4-i u[AcO + ac(2i - 4)]
(30)

where

4

PMc= _ (41)(1- PMic)i(pM_)4-iu[A°c+ac(4-2i)]
i=1

P(Hlc)

Ac° --In P(HOc)
-- + 2In PMc(1 - PMc) ac = 2

PFc(1 - PFc)
ln (1 - PMc) + in (1 - PFc) ]

(31)

with

u[. l = Unit step function PiXie = PM 1 = P 1_I2 = PM3c = PM4c PFc = PFlc = PF2c = PFac = PF4_

The global error decision that results from the fusion of the error decisions for processors 1 4 is

shown in figure 10. The plot indicates that after 10 iterations, calculations made by the four-channel

system are considered incorrect. The global probabilities of a missed detection and false alarm are

0.2228 and 0.000948, respectively.
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Figure 10. Global error decision for calculations in a four-channel system.
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Concluding Remarks

A strategyhasbeenpresentedfor dynamicallymonitoringdigital controllersin the laboratory
for susceptibilityto electromagneticdisturbances.In particular,tiffs paperdiscussesthe useof
Kalmanfiltering,datafusion,anddecisiontheoryin monitoringagivendigitalcontrollerforcontrol
calculationerrors.In thisstrategy,thecontrollawscalculatedin thedigitalcontrollerweremodeled

B

as linear (or linearized) recursivc state equations. This model was used ill the design of Kalman filters
that estimate the correct control calculations. The estimates of the correct control calculations were

compared with tile calculations obtained by the control computer. Residuals were then generated

and used in probabilistic decision rules to determine if tile calculations performed by the control

unit wcrc faulty. A decision was made for the command calculation of each control loop and these

local decisions were weighted and fused into an integrity decision for control calculations by using

an optimal fllsion rule.

An example of this process was presented which can be used as a baselinc design for fllture work.

Future work includes an analysis of the baseline design for detection sensitivity to changes in matrix

parameter values. Designs of the statistical decision rules, data fusion algorithms, and Kalman filter

gains can bc performed to optimize trade-offs such as sensitivity and diagnostic capability versus

complexity, reliable detection without falsc alarms, and sensitivity to erroneous parameter changes

with robustness to modeling errors.

NASA Langley Research Center
Hampton, VA 23681-000I
August 26, 1992
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